SportLogia
          Vol. 10, Issue 2, December 2014.
      
Role of Central Fatigue in Resistance and  Endurance 
Exercises: An Emphasis on Mechanisms and Potential Sites
        Kimiya Sadri1, Mostafa Khani2,  and Iraj Sadri3
        1Education  office of Tabriz, Tabriz, Iran
        2Department  of Physical Education and Sports Sciences, Ahar Branch, Islamic Azad  University, Ahar, Iran
        3Department  of Physical Education and Sports Sciences, Shabestar Branch, Islamic Azad  University, Shabestar, Iran
  OWERVIEV  PAPER
  doi: 10.5550/sgia.141002.en.003S                                                                                                                                             
  UDK:  786.012.116 
Summary
        An  exercise-induced reduction in maximal force production, or the inability to  continue an activity with enough force, is defined as fatigue. Although the  etiology of fatigue is complex, it can be divided into two distinct components:  central and peripheral. Central fatigue is the progressive exercise-induced  loss of the voluntary activation, or decrease in the neural stimulation, of the  muscle, thereby reducing maximal force production. Considering the different  mechanisms of strength and endurance activities as well as previous research,  the authors suggest that there is peripheral fatigue in both kinds of  activities. However, the mechanisms of fatigue and the rate of perceived  exertion are distinct (mentally, endurance exercise is more difficult). An  analysis of fatigue kinetics shows that peripheral fatigue occurs initially,  and the central nervous system tries to prevent the disorder via output force  through the perceptions of the metabolic condition of the muscle and the  activation of additional motor units. Once peripheral fatigue surpasses a  certain amount, the central nervous system reduces the number of activated  motor units to prevent serious disorders in homeostasis and muscle damage, and  protects the central governor. Still, in important and critical situations such  as the final stages of running a marathon (when the last flight of runners is  observed) and fight-or-flight situations in which someone faces a worse outcome  if a task is abandoned, humans can choose one of worse or the worst  alternatives to write their final destiny.
        Key words:central  fatigue, maximum voluntary contraction, neurotransmitters, temperature,  perceived exertion.
        References
        
Abbiss,  C. R., & Laursen, P. B. (2005). Models to Explain Fatigue during Prolonged  Endurance Cycling. Sports Med, 35(10), 865−898. doi:  10.2165/00007256-200535100-00004![]()
        Adreani,  C. M., Hill, J. M., & Kaufman, M. P. (1997). Responses of group III and IV  muscle afferents to dynamic exercise. Journal of Applied Physiology, 82(6),  1811−1817. PMid: 9173945
        Ahtiainen,  J. P., & Hakkinen, K. (2009). Strength Athletes Are Capable to Produce  Greater Muscle Activation and Neural Fatigue During High-Intensity Resistance  Exercise Than Nonathletes. Journal of Strength & Conditioning Research, 23(4), 1129−1134. doi: 10.1519/JSC.0b013e3181aa1b72
; PMid: 19528869
        Amannn,  M., & Dempsey, J. A. (2008). Locomotor muscle fatigue modifies central  motor drive in healthy humans and imposes a limitation to exercise performance. The Journal of Physiology, 586(Pt 1), 161−173. 
        doi:  10.1113/jphysiol.2007.141838
; PMid: 17962334; PMCid: PMC2375542
        Amann,  M., Eldridge, M., Lovering, A., Stickland, M., Pegelow, D., & Dempsey, J.  (2006). Arterial oxygenation influences central motor output and exercise  performance via effects on peripheral locomotor muscle fatigue. The Journal  of Physiology, 575(Pt 3), 937−952. doi:  10.1113/jphysiol.2006.113936
; PMid: 16793898; PMCid: PMC1995675
        Amann,  M., Romer, L. M., Subudgi, A. W., Pegelow, D. F., & Dempsey, J. A. (2007).  Severity of arterial hypoxaemia affects the relative contributions of  peripheral muscle fatigue to exercise performance in healthy humans. The  Journal of Physiology, 581, 389−403. doi: 10.1113/jphysiol.2007.129700
;  PMid: 17317739; PMCid: PMC2075206
        Amann,  M., & Secher, N. H. (2010). Point: Afferent feedback from fatigued  locomotor muscles is an important determinant of endurance exercise  performance. Journal of Applied Physiology, 108(2), 452−454. 
        doi:  10.1152/japplphysiol.01386.2009
; doi: 10.1152/japplphysiol.00976.2009
; PMid:  19729588
        Babault,  N., Desbrosses, K., Fabbre, M. S., Michaut, A., & Pousson, M. (2006).  Neuromuscular fatigue development during maximal concentric and isometric knee  extensions. Journal of Applied Physiology, 100(3), 780−785. 
        doi:  10.1152/japplphysiol.00737.2005
; PMid: 16282433
        Bailey,  S. P., Davis, J. M., & Ahlborn, E. N. (1993). Neuroendocrine and substrate  responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal  of Applied Physiology, 74(6), 3006−3012. PMid: 8366000
        Berchicci,  M., Menotti, F., Macaluso, A., & Dirusso, F. (2013). The neurophysiology of  central and peripheral fatigue during sub-maximal lowerlimb isometric  contractions. Frontiersin Human Neuroscience, 7, 1−10. 
        doi:  10.3389/fnhum.2013.00135
; PMid: 23596408; PMCid: PMC3625743
        Bergström,  J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen  and physical performance. Acta Physiologica Scandinavica, 71(2-3),  140−150. doi: 10.1111/j.1748-1716.1967.tb03720.x; PMid: 5584523
        Borg,  G., Edström, C. G., Linderholm, H., & Marklund, G. (1972). Changes in  physical performance induced by amphetamine and amobarbital. Psychopharmacologia, 26(1), 10−18. doi: 10.1007/BF00421914![]()
        Boukant,  J. (1974). The effect of firing rate on preoptic neuronal thermosensitivity. The  Journal of Physiology, 240(1), 661−669.
        Brown,  S., Gisolfi, C., & Mora, F. (1982). Temperature regulation and dopaminergic  systems in the brain: does the substantia nigra play a role? Brain Res,  234, 275−286. doi: 10.1016/0006-8993(82)90868-X![]()
        Bruck,  K., & Olschewski, H. (1987). Body temperature related factors diminishing  the drive to exercise. Canadian journal of physiology and pharmacology, 65(6),  1274−1280. doi: 10.1139/y87-203![]()
        Byrne,  C., Lee, J., Chew, S. A. N., Lim, C. L., & Tan, E. (2006). Continuous  thermoregulatory responses to mass-participation distance running in heat. Medicine  and Science in Sports and Exercise, 38(3), 803−810. 
        doi:  10.1249/01.mss.0000218134.74238.6a
; PMid: 16672830
        Cheung,  S. S. (2007). Hyperthermia and voluntary exhaustion: integrating models and  future challenges. Applied Physiology, Nutrition, and Metabolism, 32(4),  808−817. doi: 10.1139/H07-043
; PMid: 17622299
        Cheung,  S. S., & Mclellan, T. M. (1998). Heat acclimation, aerobic fitness, and  hydration effects on tolerance during uncompensable heat stress. Journal of  Applied Physiology, 84(5), 1731−1739. 
        doi: 10.1007/s004210050386![]()
        Clark,  W. G., & Lipton, J. (1986). Changes in body temperature after  administration of adrenergic and serotonergic agents and related drugs  including antidepressants: II. Neuroscience & Biobehavioral Reviews, 10(2), 153−220. 
        doi: 10.1016/0149-7634(86)90025-4![]()
        Crewe,  H., Tucker, R., & Noakes, T. 2008. The rate of increase in rating of  perceived exertion predicts the duration of exercise to fatigue at a fixed  power output in different environmental conditions. Eur J Appl Physiol Occup  Physiol, 103, 569−577. doi: 10.1007/s00421-008-0741-7
; PMid: 18461352
        Davis,  J., Bailey, S., Jackson, D., Strasner, A., & Morehouse, S. (1993). 438  Effects of A Serotonin (5-Ht) Agonist During Prolonged Exercise to Fatigue in  Humans. Medicine & Science in Sports & Exercise, 25(5),  S78. 
        doi: 10.1249/00005768-199305001-00440![]()
        Davis,  M. P., & Walsh, D. (2010). Mechanisms of Fatigue. J Support Oncol, 8(4),  164−174. PMid: 20822034
        Decorte,  N., Lafaix, P. A., Millet, G. Y., Wuyam, B., & Verges, S. (2012). Central  and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand  J Med Sci Sports, 22(3), 381−391. 
        doi:  10.1111/j.1600-0838.2010.01167.x
; PMid: 20807390
        Desschenes,  M. R., Maresh, C. M., & Kraemer, W. J. (1994). The Neuromuscular Junction:  Structure function, and its role in the Excitation of Muscle. The Journal of  Strength and Conditioning Research, 8(2), 103−109. 
        doi:  10.1519/00124278-199405000-00008
;
        doi: 10.1519/1533-4287
        (1994)008<0103:TNJSFA>2.3.CO;2![]()
        Dobkin,  B. 2008. Fatigue versus activity-dependent fatigability in patients with  central or peripheral motor impairments. Neurorehabil Neural Repair, 22(2),  105−110. doi: 10.1177/1545968308315046
; PMid: 18285599; PMCid: PMC4160309
        Duhamel,  T. A., Green, H. J., Sandiford, S. D., Perco, J. G., & Ouyang, J. (2004).  Effects of progressive exercise and hypoxia on human muscle sarcoplasmic  reticulum function. Journal of Applied Physiology, 97, 188−196. 
        doi:  10.1152/japplphysiol.00954.2003
; doi: 10.1152/japplphysiol.00958.2003
; PMid:  15064300
        Fernstrom,  J., & Fernstrom, M. (2006). Exercise, serum free tryptophan, and central  fatigue. J Nutr, 136(2), 553S–559S. PMid: 16424146
        Foley,  T., & Fleshner, M. (2008). Neuroplasticity of dopamine circuits after  exercise: implications for central fatigue. Neuromolecular Med, 10(2),  67−80. doi: 10.1007/s12017-008-8032-3
; PMid: 18274707
        Gadnon,  P., Saey, D., Vivodtzev, I., Laviolette, L., Mainguy, V., Milot, J., ...  Maltais, F. (2009). Impact of preinduced quadriceps fatigue on exercise  response in chronic obstructive pulmonary disease and healthy subjects. Journal  of Applied Physiology, 107, 832−840. doi: 10.1152/japplphysiol.91546.2008
;  PMid: 19574500
        Galloway,  S., & Maughan, R. J. (1997). Effects of ambient temperature on the capacity  to perform prolonged cycle exercise in man. Medicine and Science in Sports  and Exercise, 29(9), 1240−1249.
doi:  10.1097/00005768-199709000-00018![]()
        Gandevia,  S. 2001. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 81(4), 1725−1789. PMid: 11581501
        Georgiades,  E., Beham, W., Kilduff, L., Hadjicharalambous, M., Mackie, E., Wilson, J., ...  Pitsiladis, Y. (2003). Chronic fatigue syndrome: new evidence for a central  fatigue disorder. Clinical Sciences, 105(2), 213−218.
        doi:  10.1042/CS20020354
; PMid: 12708966
        Gibson,  S. C., Lambert, M., & Noakes, T. (2001). Neural control of force output  during maximal and submaximal exercise. Sports Med, 31(9),  637−650. doi: 10.2165/00007256-200131090-00001![]()
        González-Alonso,  J., & Calbet, J. A. (2003). Reductions in systemic and skeletal muscle  blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation, 107(6), 824−830. 
        doi: 10.1161/01.CIR.0000049746.29175.3F![]()
        González-Alonso,  J., Teller, C., Andersen, S. L., Jensen, F. B., Hylding, T., & Nikelsen, B.  (1999). Influence of body temperature on the development of fatigue during  prolonged exercise in the heat. Journal of Applied Physiology, 86,  1032−1039. PMid: 10066720
        Hargreaves,  M., & Febbraio, M. (1998). Limits to exercise performance in the heat. International  journal of sports medicine, 19(Suppl. 2), S115–S116. doi:  10.1055/s-2007-971973; PMid: 9694414
        Hasegawa,  H., Piacentini, M., Sarre, S., Michotte, Y., Ishiwata, T., & Meeusen, R.  (2008). Influence of brain catecholamines on the development of fatigue in  exercising rats in the heat. J Physiol, 586(Pt 1), 141−149. 
        doi:  10.1113/jphysiol.2007.142190
; PMid: 17947314; PMCid: PMC2375558
        Heyes,  M., Garnett, E., & Coates, G. (1985). Central dopaminergic activity  influences rats ability to exercise. Life sciences, 36(7), 671−677.  doi: 10.1016/0024-3205(85)90172-9![]()
        Kaufman,  M. P., & Forster, H. V. (1996). Reflexes controlling circulatory,ventilatory  and airway responses to exercise. In L. Rowell and J. T. Shepherd (Eds.), Handbook  of Physiology, section 12, Exercise: Regulation and Integration of Multiple  Systems (pp. 381–447). Oxford, NY: University Press. 
        Kay,  D., & Marino, F. (2000). Fluid ingestion and exercise hyperthermia:  implications for performance, thermoregulation, metabolism and the development  of fatigue. J Sports Sci Med, 18(2), 71−82.
        Kent-Braun,  J. (1999). Central and peripheral contributions to muscle fatigue in humans  during sustained maximal effort. Eur J Appl Physiol Occup Physiol, 80(1),  57−63. doi: 10.1007/s004210050558
; PMid: 10367724
        Kilpatrick,  Z. P. (2010). Spatially structured waves and oscillations in neuronal  networks with synaptic depression and adaptation. Unpublish doctoral  thesis, University of Utah.
        Leite,  L. H. R., Rodrigues, A. G., Soares, D. D., Marubayashi, U., & Coimbra, C.  N. C. (2010). Central Fatigue Induced by Losartan Involves Brain Serotonin  and Dopamine Content. Medicine & Science in Sports & Exercise. 
        doi:  10.1249/MSS.0b013e3181d03d36
; PMid: 20068491
        Lepers,  R., Millet, G., & Maffiuletti, N. (2001). Effect of cycling cadence on  contractile and neural properties of knee extensors. Med Sci Sports Exerc, 33(11), 1882−1888. doi: 10.1097/00005768-200111000-00013![]()
        Light,  A. R., Hughen, R. W., Zhang, J., Rainier, J., Liu, Z., & Lee, J. (2008).  Dorsal root ganglion neurons innervating skeletal muscle respond to  physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X,  and TRPV1. Journal of neurophysiology, 100, 1184−1201. doi:  10.1152/jn.01344.2007
; PMid: 18509077
        Marcora,  S. M., Staiano, W., & Manning, V. (2009). Mental fatigue impairs physical  performance in humans. J Appl Physiol, 106(3), 857−864. doi:  10.1152/japplphysiol.91324.2008
; PMid: 19131473
        Marino,  F. E. 2004. Anticipatory regulation and avoidance of catastrophe during  exercise-induced hyperthermia. Comparative Biochemistry and Physiology Part  B: Biochemistry and Molecular Biology, 139(4), 561−569. 
        doi:  10.1016/j.cbpc.2004.09.010
; PMid: 15581788
        Meeusen,  R., & De Meirleir, K. (1995). Exercise and brain neurotransmission. Sports  Medicine, 20(3), 160−188. 
        doi: 10.2165/00007256-199520030-00004![]()
        Meeusen,  R., & Roelands, B. (2010). Central fatigue and neurotransmitters, can  thermoregulation be manipulated? Scandinavian journal of medicine &  science in sports, 20(3), 19−28. doi: 10.1111/j.1600-0838.2010.01205.x
; PMid: 21029187
        Meeusen,  R., Watson, P., Hasegawa, H., Roelands, B., & Piacentini, M. (2007). Brain  neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab, 32(5),  857−864. doi: 10.1139/H07-080
; PMid: 18059610
        Millet,  G. Y. (2011). Can neuromuscular fatigue explain running strategies and  performance in ultra-marathons? Sports Medicine, 41(6), 489−506.  doi: 10.2165/11588760-000000000-00000
; PMid: 21615190
        Morrison,  S., Sleivert, G. G., & Cheung, S. S. (2004). Passive hyperthermia reduces  voluntary activation and isometric force production. European journal of  applied physiology, 91(5-6), 729−736. 
        doi:  10.1007/s00421-004-1063-z
; PMid: 15015001
        Myers,  R., & Yaksh, T. (1968). Feeding and temperature responses in the  unrestrained rat after injections of cholinergic and aminergic substances into  the cerebral ventricles. Physiology & Behavior, 3, 917−928. 
        doi:  10.1016/0031-9384(68)90178-9![]()
        Nakayama,  T., Eisenman, J., & Hardy, J. (1961). Single unit activity of anterior  hypothalamus during local heating. Science, 134(3478), 560−561.  doi: 10.1126/science.134.3478.560
; PMid: 13727681
        Newsholme,  E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain  neurotransmitters and a functional link between muscle and brain that is  important in sustained exercise. In G.Benzi (Ed.), Advances in Biochemistry  (pp. 127–138). Glasgow, United Kingdom: John Libbey Eurotext. Ng, Q. Y., Lee,  K. W., Byrne, C., Ho, T. F., & Lim, C. L. (2008). Plasma endotoxin and  immune responses during a 21-km road race under a warm and humid environment. Annals-Academy  of Medicine Singapore, 37(4), 307−314.
        Nielsen,  B., Hales, J., Strange, S., Christensen, N. J., Warberg, J. & Saltin, B.  (1993). Human circulatory and thermoregulatory adaptations with heat  acclimation and exercise in a hot, dry environment. The Journal of  Physiology, 460, 467−485. doi: 10.1113/jphysiol.1993.sp019482![]()
        Noakes,  T. (2000). Physiological models to understand exercise fatigue and the  adaptations that predict or enhance athletic performance. Scandinavian  journal of medicine & science in sports, 10(3), 123−145. doi:  10.1034/j.1600-0838.
        2000.010003123.x![]()
        Noakes,  T. D., Gibson, A. S. C., & Lambert, E. V. (2005). From catastrophe to  complexity: a novel model of model of integrative central neural regulation of  effort and fatigue during exercise in humans: summary and conclusions. Br J  Sports Med, 39(4), 120−124. doi: 10.1136/bjsm.2003.010330
; PMid:  15665213; PMCid: PMC1725112
        Nybo,  L., & Secher, N. H. (2004). Cerebral perturbations provoked by prolonged  exercise. Progress in neurobiology, 72(4), 223−261. doi:  10.1016/j.pneurobio.2004.03.005
; PMid: 15142684
        Ohta,  M., Hirai, N., Ono, Y., Ohara, M., Saito, S., Horiguchi, S., ... Andou, T.  (2005). Clinical biochemical evaluation of central fatigue with 24-hour  continuous exercise. Rinsho byori. The Japanese journal of clinical  pathology, 53(9), 802−809.
        Pannier,  J., Bouckaert, J., & Lefebvre, R. (1995). The antiserotonin agent pizotifen  does not increase endurance performance in humans. European journal of  applied physiology and occupational physiology, 72(1-2), 175−178.  
        doi: 10.1007/BF00964134![]()
        Parise,  G., Bosman, M. J., Boecker, D. R., Barry, M. J., & Tarnopolsky, M. A.  (2001). Selective serotonin reuptake inhibitors: their effect on high-intensity  exercise performance. Archives of physical medicine and rehabilitation, 82(7),  867−871. doi: 10.1053/apmr.2001.23275
; PMid: 11441370
        Parkin,  J., Carey, M., Zhao, S., & Febbraio, M. (1999). Effect of ambient  temperature on human skeletal muscle metabolism during fatiguing submaximal  exercise. Journal of Applied Physiology, 86(3), 902−908. PMid:  10066703
        Periard,  J. D., Caillaud, C., & Thompson, M. W. (2011). Central and peripheral  fatigue during passive and exercise-induced hyperthermia. Med Sci Sports  Exerc, 43(9), 1657−1665. doi: 10.1249/MSS.0b013e3182148a9a
; PMid:  21364487
        Piacentini,  M. F., Meeusen, R., Buyse, L., De Schutter, G., Kempenaers, F., Van Nijvel, J.,  & De Meirleir, K. (2002). No effect of a noradrenergic reuptake inhibitor  on performance in trained cyclists. Medicine and Science in Sports and  Exercise, 34, 1189−1193. doi: 10.1097/00005768-200207000-00021
; PMid:  12131261
        Place,  N., Lepers, R., Deley, G., & Millet, G. (2004). Time course of  neuromuscular alterations during a prolonged running exercise. Med Sci  Sports Exerc, 36(8), 1347−1356. doi:  10.1249/01.MSS.0000135786.22996.77![]()
        Quan,  N., Xin, L., & Blatteis, C. M. (1991). Microdialysis of norepinephrine into  preoptic area of guinea pigs: characteristics of hypothermic effect. American  Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 261(2  30-2), R378−R385.
        Quan,  N., Xin, L., Ungar, A., & Blatteis, C. (1992). Preoptic  norepinephrine-induced hypothermia is mediated by alpha 2-adrenoceptors. American  Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 262(3  31-3), R407−R411.
        Robbins,  D. W., Goodale, T. L., Docherty, D., Behm, D. G., & Tran, Q. T. (2010). The  Effects of Load and Training Pattern on Acute Neuromuscular Responses in the  Upper Body. Journal of Strength & Conditioning Research, 24(11),  2996−3007. doi: 10.1519/JSC.0b013e3181f67474
; PMid: 20975369
        Roelands,  B., Goekint, M., Buyse, L., Pauwels, F., De Schutter, G., Piacentini, F., ...  Meeusen, R. (2009). Time trial performance in normal and high ambient  temperature: is there a role for 5-HT? European journal of applied  physiology, 107(1), 119−126. doi: 10.1007/s00421-009-1109-3
; PMid:  19533165
        Roelands,  B., Goekint, M., Heyman, E., Piacentini, M. F., Watson, P., Hasegawa, ...  Meeusen, R. (2008). Acute norepinephrine reuptake inhibition decreases  performance in normal and high ambient temperature. Journal of Applied  Physiology, 105(1), 206−212. doi: 10.1152/japplphysiol.90509.2008
;  PMid: 18499777
        Romanowski,  W., & Grabiec, S. (1974). The role of serotonin in the mechanism of central  fatigue. Acta Physiol Pol., 25(2), 127−134, PMid: 4830711
        Ross,  E., Goodall, S., Stevens, A., & Harris, I. (2010). Time course of  neuromuscular changes during running in well-trained subjects. Med Sci  Sports Exerc, 42(6), 1184−1190. PMid: 19997016
        Ross,  E. Z., Middleton, N., Shave, R., George, K., & Nowicky, A. (2007).  Corticomotor excitability contributes to neuromuscular fatigue following  marathon running in man. Exp Physiol, 92(2), 417−426. 
        doi:  10.1113/expphysiol.2006.035972
; PMid: 17099060
        Rowell,  L., Marx, H., Bruce, R., Conn, R., & Kusumi, F. (1966). Reductions in  cardiac output, central blood volume, and stroke volume with thermal stress in  normal men during exercise. Journal of Clinical Investigation, 45(11),  1801−1816 doi: 10.1172/JCI105484
; PMid: 5926447; PMCid: PMC292862.
        Schule,  C., Baghai, T., Schmidbauer, S., Bidlingmaier, M., Strasburger, C. J., &  Laakmann, G. (2004). Reboxetine acutely stimulates cortisol, ACTH, growth hormone  and prolactin secretion in healthy male subjects. Psychoneuroendocrinology, 29(2), 185−200. doi: 10.1016/S0306-4530(03)00022-2![]()
        Scott,  I., & Boulant, J. (1984). Dopamine effects on thermosensitive neurons in  hypothalamic tissue slices. Brain Res, 306(1-2), 157−163. doi:  10.1016/0006-8993(84)90364-0![]()
        Shephard,  R. J. (2009). Is it Time to Retire the ‘Central Governor’? Sports Medicine, 39(9), 709−721. 
        doi: 10.2165/11315130-000000000-00000
; PMid: 19691362
        Simons-Weidenmaier,  N. S., Weber, M., Plappert, C. F., Pilz, P. K. D., & Schmid, S. (2006).  Synaptic depression and short-term habituation are located in the sensory part  of the mammalian startle pathway. BMC Neuroscience, 7(1), 38.  doi: 10.1186/1471-2202-7-38
; PMid: 16684348; PMCid: PMC1479352
        Struder,  H., & Weicker, H. (2001). Physiology and pathophysiology of the  serotonergic system and its implications on mental and physical performance.  Part I. International journal of sports medicine, 22(7), 467−481.  
        doi: 10.1055/s-2001-17605
; doi: 10.1055/s-2001-17606![]()
        Szabo,  S. T., & Blier, P. (2001). Functional and pharmacological characterization  of the modulatory role of serotonin on the firing activity of locus coeruleus  norepinephrine neurons. Brain Res, 922(1), 9−20. 
        doi:  10.1016/S0006-8993(01)03121-3![]()
        Taylor,  J., Todd, G., & Gandevia, S. (2006). Evidence for a supraspinal  contribution to human muscle fatigue. Clin Exp Pharmacol Physiol, 33(4),  400−405. doi: 10.1111/j.1440-
        1681.2006.04363.x
; PMid: 16620309
        Taylor,  J., & Gandevia, S. (2008). A comparison of central aspects of fatigue in  submaximal and maximal voluntary contractions. J Appl Physiol, 104(2),  542−550. doi: 10.1152/japplphysiol.01053.2007
; PMid: 18032577
        Tucker,  R., Rauch, L., Harley, Y. X., & Noakes, T. D. (2004). Impaired exercise  performance in the heat is associated with an anticipatory reduction in  skeletal muscle recruitment. Pflügers Archiv, 448(4), 422−430.  
        doi: 10.1007/s00424-004-1267-4
; PMid: 15138825
        Walters,  T., Rzyn, K., Tate, L., & Mason, P. (2000). Exercise in the heat is limited  by a critical internal temperature. Journal of Applied Physiology, 89(2),  799−806. PMid: 10926668
        Watanabe,  T., Morimoto, A., & Murakami, N. (1986). Effect of amine on  temperature-responsive neuron in slice preparation of rat brain stem. American  Journal of Physiology-Regulatory, Integrative and Comparative Physiology,  250, R553−R559.
        Watson,  P., Hasagawa, H., Roelands, B., Piacentini, M. F., Looverie, R., & Meeusen,  R. (2005). Acute dopamine/noradrenaline reuptake inhibition enhances human  exercise performance in warm, but not temperate conditions. The Journal of  Physiology, 565(3), 873−883. doi: 10.1113/jphysiol.2004.079202
;  PMid: 15831540; PMCid: PMC1464564
        Wilson,  M., & Deschenes, M. (2005). The neuromuscular junction: anatomical features  and adaptations to various forms of increased, or decreased neuromuscular  activity. The international journal of neuroscience, 115(6),  803−828. doi: 10.1080/00207450590882172
; PMid: 16019575




