SportLogia
          Vol. 10, Issue 2, December 2014.
      
INFLUENCE OF LUMBOPELVIC STABILITY ON DEADLIFT PERFORMANCE IN COMPETITIVE POWERLIFTERS
        Naoki Sakakibara1, Sohee Shin1,  Tsuneo Watanabe1, and Toshio Matsuoka1
        1Department of Sports Medicine and  Sports Science, Gifu University Schools of Medicine, Japan
  ORIGINAL  SCIENTIFIC PAPER
  doi:  10.5550/sgia.141002.en.005S
  UDK: 796.88:616.718.1
Summary
        The deadlift exposes the  spine to extreme loads and requires adequate lumbopelvic (core) stability.  Deadlift performance may be influenced by the neuromuscular control of the  trunk. In this study, we aimed to compare the transversus abdominis contractile  rates in an elite powerlifter with those of a control group during deadlift and  estimate the relationships between core stability and deadlift performance. In  the present controlled laboratory study, 16 powerlifters [8 male national-level  powerlifters and 8 male regional-level powerlifters (control group)] were  tested for changes in transversus abdominis thickness to evaluate transversus  abdominis contractility at each deadlift phase using ultrasound imaging.  Compared with the control group, the elite powerlifters showed a higher  transversus abdominis contractile rate when the weight was at knee level (2.16  vs. 1.74; p = .04). There were no significant differences between the  transversus abdominis contractile rates in both groups when the weight was at  the floor and top level. This study reveals that deadlift performance may be  influenced by transversus abdominis contractility (lumbopelvic stability)
        Key words: athletic  performance, core stability, lumbopelvic stability, transversus abdominis.
        References
        
Ainscough-Potts,  A. M., Morrissey, M. C., & Critchley, D. (2006). The response of the  transverse abdominis and internal oblique muscles to different postures. Manual  Therapy, 11(1), 54−60. doi: 10.1016/j.math.2005.03.007
; PMid:  16009592
Bergmark, A.  (1989). Stability of the lumbar spine. A study in mechanical engineering. Acta  Orthopaedica Scandinavica – Supplementum, 230, 1−54. doi:  10.3109/17453678909154177
; PMid: 2658468
Bunce, S. M.,  Moore, A. P., & Hough, A. D. (2002). M-mode ultrasound: A reliable measure  of transversus abdominis thickness. Clinical Biomechanics, 17(4),  315−317. doi: 10.1016/S0268-0033(02)00011-6![]()
Cook, G.  (2001). Baseline sports-fitness testing. In B. Foran (Ed.), High Performance  Sports Conditioning (pp. 19−48). Champaign, IL: Human Kinetics Inc.
Cresswell, A.  G., Grundstrom, H., & Thorstensson, A. (1992). Observations on  intra-abdominal pressure and patterns of abdominal intramuscular activity in  man. Acta Physiologica Scandinavica, 144, 409−418. 
doi:  10.1111/j.1748-1716.1992.tb09314.x
; PMid: 1534959
Cresswell, A.  G., Oddsson, L., & Thorstensson, A. (1994). The influence of sudden  perturbations on trunk muscle activity and intra-abdominal pressure while  standing. Experimental Brain Research, 98(2), 336−341. 
doi:  10.1007/BF00228421![]()
Hales, M. E.,  Johnson, B. F., & Johnson, J. T. (2009). Kinematic analysis of the  powerlifting style squat and the conventional deadlift during competition: is  there a cross-over effect between lifts? Journal of Strength &  Conditioning Research, 23(9), 2574−2580. doi:  10.1519/JSC.0b013e3181bc1d2a
; PMid: 19910816
Hodges, P. W.  (1994). Is there a role for transversus abdominis in lumbo-pelvic stability? Spine, 4(2), 74−86. 
Hodges, P. W.,  & Richardson, C. A. (1996). Inefficient muscular stabilization of the  lumbar spine associated with low back pain. A motor control evaluation of  transversus abdominis. Spine, 21(22), 2640−2650. 
doi: 10.1097/00007632-199611150-00014
: PMid: 8961451
Hodges, P. W.,  & Richardson, C. A. (1997). Feedforward contraction of transversus  abdominis is not influenced by the direction of arm movement. Experimental  Brain Research, 114(2), 362−370. doi: 10.1007/PL00005644![]()
Hodges, P. W.,  & Richardson, C. A. (1998). Delayed postural contraction of transversus  abdominis in low back pain associated with movement of the lower limb. Journal  of Spinal Disorders, 11(1), 46−56. 
doi:  10.1097/00002517-199802000-00008![]()
Hodges, P. W.,  Richardson, C. A., & Hasan, Z. (1997). Contraction of the abdominal muscles  associated with movement of the lower limb. Physical Therapy, 77(2),  132−134. PMid: 9037214
Kanehisa, H.,  Ikegawa, S., & Fukunaga, T. (1994). Comparison of muscle cross-sectional  area and strength between untrained women and men. European Journal of  Applied Physiology and Occupational Physiology, 148−154. 
doi:  10.1007/BF00244028
; doi: 10.1007/BF00843736![]()
Kibler, W. B.,  Press, J., & Sciasciam, A. (2006). The role of core stability in athletic  function. Sports Medicine, 36(3), 189−198. doi:  10.2165/00007256-200636030-00001![]()
Liemohn, W. P.,  Baumgartner, T. A., & Gagnon, L. H. (2005). Measuring core stability. J  Strength Cond Res, 19(3), 583−586. doi:  10.1519/1533-4287(2005)19[583:MCS]2.0.CO;2
; 
doi:  10.1519/00124278-200508000-00016![]()
Maughan, R. J.,  Watson, J. S., & Weir, J. (1984). Muscle strength and cross-sectional area  in man: a comparison of strength-trained and untrained subjects. Br J Sports  Med, 18(3), 149–157. doi: 10.1136/bjsm.18.3.149
: PMid: 6487941;  PMCid: PMC1859378
McGill, S.  (2001). Lower back stability: from formal description to issues for performance  and rehabilitation. Exercise and Sport Sciences Reviews, 29(1),  26−31. doi: 10.1097/00003677-200101000-00006![]()
McGill S.  (2002). Low back disorders. 2nd ed. Champaign, IL: Human Kinetics Inc.
McGill, S.  (2010). Core training: evidence translating to better performance and injury  prevention. Strength & Conditioning Journal, 32(3), 33−46.  doi: 10.1519/SSC.0b013e3181df4521![]()
McGuigan, M. R.  M., & Wilson, B. D. (1996). Biomechanical analysis of the deadlift. Journal  of Strength & Conditioning Research, 10(4), 250−255. doi:  10.1519/00124278-199611000-00008
; 
doi:  10.1519/1533-4287(1996)010<0250:BAOTD>2.3.CO;2![]()
Miller, M. I.,  & Medeiros, J. M. (1987). Recruitment of internal oblique and transversus  abdominis muscle during the eccentric phase of the curl-up exercise. Physical  Therapy, 67(8), 1213−1217. PMid: 2956614
Misuri, G.,  Colagrande, S., & Gorini, M. (1997). In vivo ultrasound assessment of  respiratory function of abdominal muscles in normal subjects. European  Respiratory Journal, 10(12), 2861−2867. 
doi:  10.1183/09031936.97.10122861![]()
Oddsson, L. I.  (1990). Control of voluntary trunk movements in man: mechanisms for postural  equilibrium during standing. Acta Physiologica Scandinavica Supplementum,  595, 1−60. PMid: 2080712
Panjabi, M. M.  (1992). The stabilizing system of the spine. Part 1. function, dysfunction,  adaptation and enhancement. Journal of Spinal Disorders, 5(4),  383−389. doi: 10.1097/00002517-199212000-00001
; PMid: 1490034
Parkhouse, K.  L., & Ball, N. (2011). Influence of dynamic versus static core exercises on  performance in field based fitness tests. Journal of Bodywork and Movement  Therapies, 15(4), 517−524. PMid: 21943626
Rankin, G.,  & Stokes, M. (1998). Reliability of assessment tools in rehabilitation:an  illustration of appropriate statistical analysis. Clinical Rehabilitation, 12(3), 187−199. doi: 10.1191/026921598672178340![]()
Springer, B. A., & Gill, N. W. (2007). Use of rehabilitative  ultrasound imaging to characterize abdominal muscle structure and function in  lower extremity amputees. Journal of Orthopaedic & Sports Physical  Therapy, 37(10), 635−643. doi: 10.2519/jospt.2007.2532
; PMid:  17970411




