SportLogia
          Vol. 16, Issue 1, december 2020.
      
COMPARISON OF METHODS FOR  DETERMINING PERCENTAGE OF BODY FAT ON A  SAMPLE OF  KAYAKERS  AND CANOEISTS – IN SLALOM
      
Goran Pašić1, Goran  Grahovac1& Milomir Trivun2
        1Faculty of Physical Education and  Sports, University of Banja Luka, Bosnia and Herzegovina 
        2Faculty of Physical Education and Sports,  University of East Sarajevo, Bosnia and Herzegovina
ORIGINAL SCIENTIFIC PAPER
doi:10.5550/sgia.201601.en.pgt
UDC: 797.122
Abstract
Determining body structure in physical culture, sports, but also in sports recreation is one of the ways to check effectiveness of certain training programs and their impact on a percentage of subcutaneous fat and fat-free components. This study was conducted on a sample of 49 kayakers and slalom canoeists (aged 19.9 ± 1.7 years), and the aim was to compare validity of methods for estimating percentage of body fat based on the skinfold measurement method in relation to the bioelectrical impedance method for application in diagnostics within a training process of slalom kayakers and slalom canoeists. The percentage of body fat was determined by methods of determining the percentage of body fat according to Siri (1961), Brozek et al. (1963), Jackson, & Pollock, (1985) and the BIA bioelectrical impedance method. After statistical procedures, correlation analysis revealed a high correlation between the methods: anthropometric methods according to Siri and Brozek, both methods with the Jackson Pollock method, while all three methods have a high level of correlation with the BIA method, while the Wilcoxon test showed that the bioelectrical impedance method had statistically significantly higher values than the method of determining the percentage of body fat according to Siri & Brozek (p <0.001), and significantly lower than the method of determining the percentage of body fat according to Jackson Pollock (p = 0.005). The research showed that in the observed sample of respondents, when it comes to one respondent, a group of respondents, respondents within one sport or an uneven sample of non-athletes, if it is not possible to use some of the more sophisticated BIA methods, a satisfactory method could be the skinfold measurement method
        Key words: javelin throw,  vortex, students, throwing technique, performance evaluation methods
        References
1. Achten, J., & Jeukendrup, A. E. (2004). Optimizing  fat oxidation through exercise and diet. Nutrition (Burbank, Los Angeles  County, Calif.), 20(7-8), 716-727.
        https://doi.org/10.1016/j.nut.2004.04.005[CrossRef]
PMid:15212756
        2. Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J.,  Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status  of body composition assessment in sport: review and position statement on  behalf of the ad hoc research working group on body composition health and  performance, under the auspices of the I.O.C. Medical Commission. Sports  medicine (Auckland, N.Z.), 42(3), 227-249.
  https://doi.org/10.2165/11597140-000000000-00000[CrossRef]
        PMid:22303996
3. Baščvan, S., Vučetič, V., & Rodić, S. (2011). Comparison of different methods for assessment body composition. U: S. Simović (Ur.), 2nd international scientific congress"Anthropological aspects of sport, physical education and recreation". 2, str. 165-169. Banja Luka: Faculty of Physical Education and Sport
        4. Bielik, V., Messias, L.H., Vajda, M., Lopata, P., Chudý,  J., & Manchado-Gobatto, F. (2019). Is the aerobic power a delimitating  factor for performance on canoe slalom?: An analysis of Olympic Slovak canoe  slalom medalists and non-Olympics since Beijing 2008 to Rio 2016. Journal of  Human Sport and Exercise, 14, 876-892.
        https://doi.org/10.14198/jhse.2019.144.16[CrossRef]
5. Bowden, R. G., Lanning, B. A., Doyle, E. I., Johnston, H. M., Nassar, E. I., Slonaker, B., Scanes, G., & Rasmussen, C. (2005). Comparison of body composition measures to dual-energy x-ray absorptiometry. Journal of Exercise Physiology Online, 8(2), 1-9.
 6. Brodie, D., Moscrip, V., & Hutcheon, R. (1998). Body  composition measurement: a review of hydrodensitometry, anthropometry, and  impedance methods. Nutrition (Burbank, Los Angeles County, Calif.), 14(3),  296-310.
        https://doi.org/10.1016/S0899-9007(97)00474-7[CrossRef]
        7. Brozek, J., & Kinsey, W.(1960). Age changes in  skinfold compressibility. Journal of Gerontology, 15 (1), 45-51.  https://doi.org/10.1093/geronj/15.1.45
        https://doi.org/10.1093/geronj/15.1.45[CrossRef]
        PMid:13805108
 8. Brozek, J., Grande, F., & Anderson, J.T.(1963).  Densiometric analysis of body composition: revision of some quantitative  assumptions. Annals of the New York Academy of Sciences, 110, 113-140.
        https://doi.org/10.1111/j.1749-6632.1963.tb17079.x[CrossRef]
        PMid:14062375
9. Burkinshaw, L., Jones, P., & Krupowicz, D. (1973). Observer Error in Skinfold Thickness Measurements. Human Biology, 45(2), 273-279. Retrieved November 6, 2020, from http://www.jstor.org/stable/41459867
        10. Company, J. & Ball, S. (2010). Body Composition  Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray  Absorptiometry in Adult Athletes, Measurement in Physical Education and  Exercise Science, 14(3), 186-201
        https://doi.org/10.1080/1091367X.2010.497449[CrossRef]
        11. Ferrari, H. G., Messias, L., Reis, I., Gobatto, C. A.,  Sousa, F., Serra, C., & Manchado-Gobatto, F. B. (2017). Aerobic Evaluation  in Elite Slalom Kayakers Using a Tethered Canoe System: A New Proposal.  International journal of sports physiology and performance, 12(7), 864-871.
        https://doi.org/10.1123/ijspp.2016-0272[CrossRef]
        PMid:27918656
        12. Fornetti, W. C., Pivarnik, J. M., Foley, J. M., &  Fiechtner, J.J.(1999). Reliability and validity of body composition measures in  female athletes. Journal of Applied Physiology, (Bethesda, Md.: 1985), 87(3),  1114-1122.
        https://doi.org/10.1152/jappl.1999.87.3.1114[CrossRef]
        PMid:10484585
 13. Forsyth, H. L., & Sinning, W. E.(1973). The  anthropometric estimation of body density and lean body weight of male  athletes. Medicine and science in sports, 5(3), 174-180.
        https://doi.org/10.1249/00005768-197323000-00015[CrossRef]
        PMid:4747639
14. Gollnick P. D. (1985). Metabolism of substrates: energy substrate metabolism during exercise and as modified by training. Federation proceedings, 44(2), 353-357.
        15. Hagner-Derengowska, M., Hagner, W., Zubrzycki, I.,  Krakowiak, H., Słomko, W., Dzierżanowski, M., Rakowski, A., &  Wiącek-Zubrzycka, M. (2014). Body structure and composition of canoeists and kayakers:  analysis of junior and teenage polish national canoeing team. Biology of sport,  31(4), 323-326.
        https://doi.org/10.5604/20831862.1133937[CrossRef]
        PMid:25609891 PMCid:PMC4296839
        16. Hamano, S., Ochi, E., Tsuchiya, Y., Muramatsu, E.,  Suzukawa, K., & Igawa, S. (2015). Relationship between performance test and  body composition/physical strength characteristic in sprint canoe and kayak  paddlers. Open access journal of sports medicine, 6, 191-199.
        https://doi.org/10.2147/OAJSM.S82295[CrossRef]
        PMid:26150737 PMCid:PMC4480586
        17. Himes, J. H., Roche, A. F., & Siervogel, R. M.  (1979). Compressibility of skinfolds and the measurement of subcutaneous  fatness. The American journal of clinical nutrition, 32(8), 1734-1740.
        https://doi.org/10.1093/ajcn/32.8.1734[CrossRef]
        PMid:463811
 18. Jackson, A. S., & Pollock, M. L. (1978). Generalized  equations for predicting body density of men. British Journal of Nutrition,  40(3), 497-504.
        https://doi.org/10.1079/BJN19780152[CrossRef]
        PMid:718832
 19. Jackson, A. S., Pollock, M. L., & Ward, A. (1980). Generalized  equations for predicting body density of women. Medicine and Science in Sports  and Exercise, 12(3), 175-181.
        https://doi.org/10.1249/00005768-198023000-00009[CrossRef]
        PMid:7402053
20. Jackson, A. S., & Pollock, M. L. (1982). Steps towards the development of generalised equations for predicting body composition of adults. Canadian Journal of Applied Sport Science, 7(3), 189-196.
 21. Jackson, A. S., & Pollock, M. L. (1985). Practical  Assessment of Body Composition. The Physician and Sportsmedicine.,13(5),76-90.
        https://doi.org/10.1080/00913847.1985.11708790[CrossRef]
        PMid:27463295
 22. Jackson, A. S., Pollock, M. L., Graves, J. E., &  Mahar, M. T. (1988). Reliability and validity of bioelectrical impedance in  determining body composition. Journal of Applied Physiology (Bethesda,  Md.:1985), 64(2), 529-534.
        https://doi.org/10.1152/jappl.1988.64.2.529[CrossRef]
        PMid:3372410
        23. Kameyama, O., Shibano, K., Kawakita, H., Ogawa, R.,  & Kumamoto, M. (1999). Medical check of competitive canoeists. Journal of  Orthopaedic Science, 4(4), 243-249.
        https://doi.org/10.1007/s007760050099[CrossRef]
        PMid:10436270
        24. Keller, B., & Katch, F.I. (1985). Validity of  bioelectrical resistive impedanse forestimation of body fat in lean males.  Medicine & Science in Sports & Exercise, 17 (2), 272.
        https://doi.org/10.1249/00005768-198504000-00404[CrossRef]
        25. Knechtle, B., Knechtle, P., & Rosemann, T. (2011).  Upper body skinfold thickness is related to race performance in male Ironman  triathletes. International Journal of Sports Medicine, 32(1), 20-27.
        https://doi.org/10.1055/s-0030-1268435[CrossRef]
        PMid:21110283
        26. Lintsi, M., Kaarma, H., & Kull, I. (2004).  Comparison of hand-to-hand bioimpedanse and anthropometry equations versus  dual-energy X-ray absorptiometry for the assessment of body fat percentage in  17-18-year-old conscripts. Clinical Physiology and Functional Imaging, 24(2),  85-90.
        https://doi.org/10.1111/j.1475-097X.2004.00534.[CrossRef]x
        PMid:15056180
27. Lohman T. G. (1981). Skinfolds and body density and their relation to body fatness: a review. Human Biology, 53(2), 181-225.
        28. Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W., &  Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance  measurements of the human body. The American journal of clinical nutrition,  41(4), 810-817.
        https://doi.org/10.1093/ajcn/41.4.810[CrossRef]
        PMid:3984933
        29. Lundström, P., Borgen, J. S., & McKenzie, D. (2019).  The canoe/kayak athlete. In D. McKenzie, & B. Berglund, Handbook of Sports  Medicine and Science Canoeing (pp. 40-46). Hoboken, NJ : Wiley-Blackwell.
        https://doi.org/10.1002/9781119097198.ch3[CrossRef]
        30. Macias, N., Alemán-Mateo, H., Esparza-Romero, J., &  Valencia, M.E. (2007). Body fat measurement by bioelectrical impedanse and air  displacement plethysmography: a cross-validation study to design bioelectrical  impedanse equations in Mexican adults. Nutrition Journal, 6, 18.
        https://doi.org/10.1186/1475-2891-6-18[CrossRef]
        PMid:17697388 PMCid:PMC2020472
        31. Macdermid, P. W., Osborne, A., & Stannard, S. R.  (2019). Mechanical Work and Physiological Responses to Simulated Flat Water  Slalom Kayaking. Frontiers in physiology, 10, 260.
        https://doi.org/10.3389/fphys.2019.00260[CrossRef]
        PMid:30949065 PMCid:PMC6436605
        32. Malina R. M. (2007). Body composition in athletes:  assessment and estimated fatness. Clinics in sports medicine, 26(1), 37-68.
        https://doi.org/10.1016/j.csm.2006.11.004[CrossRef]
        PMid:17241914
        33. Manchado-Gobatto, F. B., Arnosti Vieira, N., Dalcheco  Messias, L. H., Ferrari, H. G., Borin, J. P., de Carvalho Andrade, V., &  Terezani, D. R. (2014). Anaerobic threshold and critical velocity parameters  determined by specific tests of canoe slalom: Effects of monitored training.  Science & Sports, 29(4), pp. e55-e58.
        https://doi.org/10.1016/j.scispo.2014.04.006[CrossRef] 
        34. Mayhew, J. L., Clark, B. A., McKeown, B. C., &  Montaldi, D. H. (1985). Accuracy of anthropometric equations for estimating  body composition in female athletes. The Journal of sports medicine and  physical fitness, 25(3), 120-126.
        35. Meleski, B. W., Shoup, R. F., & Malina, R. M.  (1982). Size, physique, and body composition of competitive female swimmers 11  through 20 years of age. Human biology, 54(3), 609-625.
        36. Messias, L. H. D., dos Reis, I. G. M., Ferrari, H. G.,  & de Barros Manchado-Gobatto, F. (2014). Physiological, psychological and  biomechanical parameters applied in canoe slalom training: a review.  International Journal of Performance Analysis in Sport, 14(1), 24-41.
        https://doi.org/10.1080/24748668.2014.11868700[CrossRef]
        37. Messias, L. H., Ferrari, H. G., Sousa, F. A., Dos Reis,  I. G., Serra, C. C., Gobatto, C. A., & Manchado-Gobatto, F. B. (2015).  All-out Test in Tethered Canoe System can Determine Anaerobic Parameters of  Elite Kayakers. International journal of sports medicine, 36(10), 803-808.
        https://doi.org/10.1055/s-0035-1548766[CrossRef]
        PMid:26038882
        38. Michailidis, Y., Methenitis, S., & Michailidis, C.  (2013). A comparison of arm to leg bioelectrical impedanse and skinfolds in  assessing body fat in professional soccer players. Journal of Sport and Human  Performance, 1(4):8-13.
        https://doi.org/10.12922/18[CrossRef] 
39. Ostojic, S.M. (2006). Estimation of body fat in athletes: skinfolds vs bioelectrical impedanse. Journal of Sports Medicine and Physical Fitness, 46, 442-446.
        40. Pollock, M. L., Gettman, L. R., Jackson, A., Ayres, J.,  Ward, A., & Linnerud, A. C. (1977). Body composition of elite class  distance runners. Annals of the New York Academy of Sciences, 301, 361-370.
        https://doi.org/10.1111/j.1749-6632.1977.tb38213.[CrossRef]x
        PMid:270927
        41. Silva, A.M, Fields, D.A., Quitério, A.L, & Sardinha,  L.B. (2009). Are Skinfold-Based Models Accurate and Suitable for Assessing  Changes in Body Composition in Highly Trained Athletes? Journal of Strength  & Conditioning Research, 23(6), 1688-1696.
        https://doi.org/10.1519/JSC.0b013e3181b3f0e4[CrossRef]
        PMid:19675495
        42. Sinning, W.E. (1974). Body composition assessment of  college wrestlers. Medicine & Science in Sports & Exercise ,6(2),  139-145
        https://doi.org/10.1249/00005768-197400620-00026[CrossRef]
43. Sinning, W.E. (1978). Anthropometric estimation of body density, fat and lean body weight in women gymnast. Medicine & Science in Sports & Exercise, 10(4), 243-249
        44. Sinning, W.E., Dolney, D.G., & Little, K.D. (1985).  Validity of "generalized" equations for body composition analysis in  male athlete. Medicine & Science in Sports & Exercise, 17(1), 124-130.
        https://doi.org/10.1249/00005768-198502000-00020[CrossRef]
        45. Sinning, W.E., & Wilson, J.W. (1984). Validity of  "generalized" equations for body composition analysis in women  athletes. Research Quarterly for Exercise and Sport, 55:2, 153-160.
        https://doi.org/10.1080/02701367.1984.10608392[CrossRef]
46. Siri, W. E. (1961). Body composition from fluid space and density. In J. Brozek & A. Hanschel (Eds.1961), Techniques for measuring body composition (pp. 223-244). Washington, DC: National Academy of Science.
47. Sudarov, N & Fratrić, F. (2010). Dijagnostika treniranosti sportista [Diagnostic of athletes]. Novi Sad, RS: Pokrajinski zavod za sport.
        48. Utter, A.C., Scott, J.R, Oppliger, R.A., Visich, P.S.,  Goss, F.L., Marks, B.L., Nieman, D.C., & Smith, B.W. (2001). A comparison  of leg-to-leg bioelectrical impedanse and skinfolds in assessing body fat in  collegiate wrestlers. Journal of Strength and Conditioning Research,  15(2),  157-160.
        https://doi.org/10.1519/1533-4287(2001)015<0157:ACOLTL>2.0.CO;2[CrossRef]
        https://doi.org/10.1519/00124278-200105000-00001[CrossRef]
        PMid:11710398
        49. Zamparo, P., Tomadini, S., Didone, F., Grazzina, F.,  Rejc, E., & Capelli, C. (2006). Bioenergetics of a slalom kayak (K1)  competition. International journal of sports medicine, 27(07), 546-552.
        https://doi.org/10.1055/s-2005-865922[CrossRef]
        PMid:16802250
        50. Wang, J. G., Zhang, Y., Chen, H. E., Li, Y., Cheng, X.  G., Xu, L., Guo, Z., Zhao, X. S., Sato, T., Cao, Q. Y., Chen, K. M., & Li,  B. (2013). Comparison of two bioelectrical impedance analysis devices with dual  energy X-ray absorptiometry and magnetic resonance imaging in the estimation of  body composition. Journal of strength and conditioning research, 27(1),  236-243.
        https://doi.org/10.1519/JSC.0b013e31824f2040[CrossRef]
        PMid:22344056
        51. Wells, J. C., & Fewtrell, M. S. (2006).  Measuring body composition. Archives of disease in childhood, 91(7), 612-617.
        https://doi.org/10.1136/adc.2005.085522[CrossRef]
        PMid:16790722 PMCid:PMC2082845
To cite this article:
        Pašić, G., Grahovac, G., &  Trivun, M. (2020). Comparasion of methods for determining procentage of body  fat on a sample of kayakers and canoeist-in slalom. Sportlogia 16 (1), 91-109.
        https.//doi.org/10.5550/sgia.201601.en.pgt
Received: 07.11.2020.
        Approved: 12.11.2020.
        Correspodence:
        Goran Pašić, Ph. D.
        Docent  at the Faculty of Physical Education and Sports, University of Banja Luka
        Bulevar  vojvode Petra Bojovica 1 A, 78 000 Banja Luka, Bosnia and Herzegovina
        Telephone: 00387 65 932 714.  
        E-mail: gorandelmonte@yahoo.it 




